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Fishnet Statistical Size Effect
on Strength of Materials With
Nacreous Microstructure
The statistical size effect has generally been explained by the weakest-link model, which is
valid if the failure of one representative volume element (RVE) of material, corresponding to
one link, suffices to cause failure of the whole structure under the controlled load. As shown
by the recent formulation of fishnet statistics, this is not the case for some architectured
materials, such as nacre, for which one or several microstructural links must fail before
reaching the maximum load or the structure strength limit. Such behavior was shown to
bring about major safety advantages. Here, we show that it also alters the size effect on
the median nominal strength of geometrically scaled rectangular specimens of a diagonally
pulled fishnet. To derive the size effect relation, the geometric scaling of a rectangular
fishnet is split into separate transverse and longitudinal scalings, for each of which a
simple scaling rule for the median strength is established. Proportional combination of
both then yields the two-dimensional geometric scaling and its size effect. Furthermore, a
method to infer the material failure probability (or strength) distribution from the median
size effect obtained from experiments or Monte Carlo simulations is formulated. Compared
to the direct estimation of the histogram, which would require more than ten million test
repetitions, the size effect method requires only a few (typically about six) tests for each
of three or four structure sizes to obtain a tight upper bound on the failure probability dis-
tribution. Finally, comparisons of the model predictions and actual histograms are pre-
sented. [DOI: 10.1115/1.4043663]

1 Introduction
The amazing mechanical robustness of bioinspired hierarchical

materials, such as nacre [1–3], the shell of a conch [4,5], or the exo-
skeleton of a figeater beetle [6], has been extensively studied over the
past two decades. Understanding of the deterministic toughening
mechanism and of the critical role of the hierarchical fine-scale struc-
ture in enhancing material toughness has been achieved and fostered
the advent of novel bioinspired materials [7–9]. However, the sto-
chastic aspects of these hierarchical materials and their effects on
the mechanical behavior have received relatively little attention.
Nukala and Simunovic [10] simulated the process of random fractur-
ing of nacre by the random fuse model. Recently, Abid et al. [11]
modeled the fracturing process using the discrete element method
with randomized material properties. The effect of randomized
parameters on strength has been discussed only qualitatively.
To clarify the effect of nacreous material architecture on the

failure probability distribution up to the tail probability of 10−6,
the connectivity of the lamellae in nacre under longitudinal
tension has been simplified as a diagonally pulled fishnet with
brittle links. In addition to the classical weakest-link and fiber
bundle model [12–14], the fishnet turned out to be the third
failure model whose probability distribution is analytically tractable
[15,16]. The fishnet links were assumed to be brittle, with a steep
drop after reaching the link strength. The fishnet strength distribu-
tions have been compared with those of the fiber bundle model
[14,17] and of the finite weakest-link model [18–25]. Subsequently,
based on the order statistics, the fishnet model was extended [26] to
take into account possible gradual postpeak softening of the individ-
ual links. In that case, to determine the failure probability distribu-
tion at the peak load, it was found necessary to consider the number

of damaged links at the peak load as a random variable required as
an input.
A big challenge for most engineering structures, such as aircraft,

bridges, or micro-electronics, is that they are supposed to be
designed for failure probability less than 10−6 per lifetime. The tol-
erable load that satisfies this probability is next to impossible to
determine experimentally, since about 108 test repetitions would
be required. Therefore, a theory is needed. It must, of course, be
experimentally verified by other means. The best and virtually the
only means available is the size effect on the nominal strength of
the structure. As already shown for calibration of the Gauss–
Weibull distribution of quasi-brittle materials such as concrete,
rocks, tough ceramics, fiber polymer composites, etc. [20], it suf-
fices, for geometrically scaled specimens, to obtain the experimen-
tal data for the structure size effect on the mean strength. Here, for
the sake of simplicity, instead of the sample mean strength, we con-
sider the structure size effect on the sample median strength even
though its variance is higher.
It should be noted that there are two types of size effect [20].

Type 2 [27,28] is typical for reinforced concrete. It occurs when
geometrically similar large cracks develop in a stable manner
prior to reaching the peak load and is also obtained in specimens
with large-scaled notches. Type 2 size effect is caused by the size
dependence of the release of stored strain energy. Its mean is deter-
ministic because the crack tip location at maximum load is deter-
mined by mechanics.
Type 1 [29], which is the type considered here, occurs to struc-

tures that become unstable as soon as a macrocrack initiates from
the zone of distributed damage. The macrocrack initiation can
occur at many places within the random strength field, which is
why the mean size effect originates from the randomness of material
strength, except for the effect of stress redistribution due to finite
size of the damaged zone, captured, e.g., by the finiteness of the
weakest-link chain model [20] (for a broad review on quasi-brittle
and fishnet failure probability, see Ref. [30]).
In the fishnet model, similar to all type 1 failures, the peak

load is decided by the failure of only a few links among
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many. Thus, in a scaled-up large specimen, few links controlling
the peak load can occur at many locations in the structure and,
for a large enough specimen, can thus sample a broad range of
failure probability distribution. This is the intuitive explanation
of the fishnet size effect. Note also that, except for very large
structures, the classical Weibull statistical size effect cannot be
applied to nacreous and other hierarchical or architectured mate-
rials. The reason is that the one-to-one correspondence between
the size effect and the strength distribution is no longer valid for
materials and structures that do not behave like a chain, such as
a fishnet.
Here, we first study the statistical size effect for rectangular fish-

nets with softening links. Instead of the exact expression, we formu-
late a tight upper bound on the lower tail distribution of the
structural strength. We achieve it by splitting the geometrically
similar scaling into longitudinal and transverse scalings and then
analyze them separately. As expected, longitudinal scaling gradu-
ally transforms the structure into a chain and transverse scaling
transforms the structure into a fiber bundle. Proportional combina-
tion of the two types of scaling finally gives us a size effect transi-
tioning between a chain and a fiber bundle. Apart from the scaling
relations of the mean and median, we also study those of the vari-
ance and coefficient of variation (CoV).

2 Median Versus Mean Strength
First, we try to formulate the median size effect, which describes

the dependence of median structure strength on its size. It is similar
to the mean size effect but is determined more easily. In the Weibull
scale plot of the strength distribution, i.e., in the plot with ordinate
ln[−ln(1−Pf)] (where Pf = failure probability), the median is the
point of ordinate ln(ln 2) (for which Pf = 0.5).
On the other hand, even though the mean of strength could be

quite hard to calculate analytically from the distribution, the mean
would have practical advantages: The sample mean would converge
much faster than the sample median, in the light of the law of large
numbers. Therefore, one could get an accurate estimation of the true
mean by a rather small number of tests. As a result, the sample mean
is always preferred in testing.
To keep the advantages of both the mean and the median, we

derive the size effect curve of the median, because of simplicity.
But, to infer the failure probability, we treat the sample means
from the tests as the medians. The effect of replacing the median
strength with the mean strength in the calculations is discussed later.

3 Correspondence Between Pf and Its Median Size
Effect
As mentioned in Sec. 1, the main purpose of obtaining the

expression of the statistical size effect is to infer the failure proba-
bility, i.e., the strength distribution Pf. Of particular interest is the
lower tail of Pf, which is almost impossible to reach with the tradi-
tional histogram testing. It is clear that for each individual strength
distribution Pf(σ), there is only one median strength σ0.5 that, by def-
inition, satisfies the condition that Pf(σ0.5)= 0.5.
The reverse, however, is not necessarily true. Given a mean or

median size effect curve of a structure, there may or may not be
only one strength distribution that corresponds to the size effect
curve. An example of multiple correspondence is the Gaussian
(normal) distribution. Its variance could vary while keeping the
mean fixed; therefore, knowing the mean value is not enough to
fully determine the probability distribution. On the other hand,
the Weibull distribution, in which the mean and the variance are
fully coupled [18], is an example of one-to-one correspondence:

s2 = μ2
Γ 1 +

2
m

( )

Γ2 1 +
1
m

( ) − 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (1)

where μ and s2 are the mean and variance of the Weibull distribu-
tion, respectively, and m is the Weibull modulus. Equation 1 indi-
cates that, given the constant m, the variance is completely fixed
if the mean is known (the variance–mean coupling disappears for
the three-parameter Weibull distribution, but its nonzero threshold
is incorrect for strength statistics [20]).
As shown previously [15], the strength distribution of the fishnet

is in the middle of the transition from the Weibull to the Gaussian
distribution. Thus, it must be concluded that the correspondence
between the median (mean) size effect curve and the strength distri-
bution Pf is not one to one. Therefore, it is impossible to get the
exact distribution function only from the size effect curve.
Instead, to make sure the prediction would be safe for the design
purposes, we seek an upper bound on Pf from the mean size
effect test data.

4 Formulation of Median Statistical Size Effect
Figure 1 shows the geometries of the four fishnets used in the

current study. The fishnet with a length of 128 (columns of links)

(a) (b) (c) (d )

Fig. 1 Schematic showing four geometrically similar fishnets under uniaxial tension: (a) 8 × 16, (b) 16 ×32, (c) 32 × 64, and (d) 64 ×
128 (partially shown). r and s denote the number of fishnet rows and columns, respectively.
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and a width of 64 (rows of links) is the largest one, due partially to
space limitations. For all the sizes, the aspect ratios are kept cons-
tant, as 1:2. We first study the evolution of strength distribution
under longitudinal and transverse scaling. Then, the scaling of geo-
metrically similar structures is treated as the combination of the two.
Same as previous studies [15,26], the structure of a nacreous

material is simplified into a rectangular fishnet consisting of r
rows and s columns of links (the rows run in the direction of
tension). The mechanical behavior is similar to the so-called panto-
graphic structures [31,32], except that we consider the truss links to
be pint jointed, with no rotational stiffness. Based on the arguments
in Refs. [20,22,24], the link strengths are treated as random vari-
ables that obey the grafted Gauss–Weibull distribution:

P1(σ) =
2.55 1 − e−(σ/12)

10
( )

, σ ≤ 8.6 MPa

0.53 − 0.47 erf[0.88(10 − σ)], σ > 8.6 MPa

{
(2)

The link-strength distribution is here considered to be directly
given, instead of being derived from a homogenized continuous
random field. In other words, the autocorrelation length is set to
be the same as the link length, reflecting the discrete nature of the
fine-scale structure of nacreous materials. Also, by doing this, we
have a direct control over the link strength distribution P1(σ), and
its power-law tail is strictly preserved.

The fishnet links are quasi-brittle and obey a linear softening law.
The brittleness of a link is characterized by the ratio |Kt/K0|, where
K0 is the initial elastic stiffness of the undamaged fishnet links and
Kt (<0) is the tangential softening stiffness. The steeper the soften-
ing slope, the more brittle the link. The fishnets are pulled uniaxially
under displacement control. Accordingly, the nominal strength σ is
measured from the boundaries: the total reaction force at peak load
divided by the cross section area. Our main interest lies in the
strength distribution Pf(σ) of the whole fishnet and the size effect
on its median. Figure 2 shows some of the typical numerical
results, such as the stress–displacement curves and damage evolu-
tion. Since the mechanical response for each size is similar, we
show the results for only one size: r= 32 and s= 64.

4.1 Longitudinal Scaling

4.1.1 Weakest-Link Behavior. To study the effect of longitudi-
nal scaling on the strength distribution, we fix the number of rows of
the fishnet at 16 (r= 16) and let the number of columns increase
geometrically from 8 to 64 (s = 8, 16, 32, and 64).
The structure begins behaving more like a chain as its length

increases while fixing its width. Intuitively, this implies that the lim-
iting strength distribution of the structure is Weibullian and that
long enough segments of the chain have almost independent
strengths. For a long chain of n segments, each of which has a

(a) (b)

Fig. 2 Typical stress–displacement curves for fishnets of size r × s= 32 × 64 and their evolution of stress field and damage:
(a) Kt=−0.1K0 and (b) Kt=−0.5K0 (more brittle). For each case, the number of discrete softening jumps to reach zero
stress in each link J= 20.
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survival (or strength) probability Ps(σ), the failure probability (or
strength) of the chain Pf satisfies the equation:

1 − Pf (σ) = [1 − Ps(σ)]
n (3)

In other words, the survival probability of the whole chain is the
joint probability of survival of all its segments (or, in other
words, no segment can fail if the whole chain is safe). Taking a log-
arithm on both sides of Eq. (3) twice yields:

ln {−ln [1 − Pf (σ)]} = ln [−ln (1 − Ps(σ))] + ln n (4)

Since the ordinate and coordinate used in the Weibull scale plot (or
Weibull paper) is ln σ and ln[−ln(1−F(σ))], respectively, the graph
of Pf for the whole chain in the Weibull scale is equivalent to shift-
ing the graph of the segment Ps upward by distance ln n. This
applies, of course, only for long enough fishnets, and so deviations
must be expected for short fishnets.
Figure 3 shows the strength histograms obtained by Monte Carlo

simulations of quasi-brittle fishnets of four different lengths (each
point in these histograms represents the mean of several hundreds
of fishnet finite element method simulations). It is clear that for fish-
nets whose lengths are greater than their width (s > r), the strength
distributions are nearly straight lines in the Weibull scale. In addi-
tion, the vertical distance between neighboring histograms is a cons-
tant ln 2, which is the logarithm of the ratio of the neighboring
fishnet lengths ln s2/s1.
These observations verify the weakest-link assumption of long

fishnets. It is also observed that for the shortest fishnet with
length 8, the upper and lower tail of its histogram deviate signifi-
cantly from the straight line. This makes sense because this
fishnet, due to its short length, is more like a fiber bundle than a
chain. Similar to the chain-of-bundles model [33], this shows
that the weakest-link model is a good approximation only when
long enough longitudinal sections are considered as the longitudinal
representative volume elements (RVEs). The model would be
invalid if either short sections or single links were treated as the
RVE.
It is interesting, although not surprising, that the convergence of

histogram to Weibull distribution is fast in the central region close
to the mean, while both the upper and lower tails converge much
slower. The Weibull modulus, which represents the slope of the dis-
tribution in theWeibull scale, does not converge to the biggest value,
m= 80, at its extreme lower tail (Fig. 3) but to an intermediate value
m= 50. Given that theWeibull modulus of the link strengths P1(σ) is
m= 10. The convergedWeibull modulus is five times as large as that
of a single link, which is due to the transverse coupling of links along
the transverse direction. In other words, there are, on average, five
damaged links for each shortest independent section prior to the

maximum load. This interesting phenomenon could be related to
the postpeak softening of individual links and deserves further
study, which is beyond the scope of the current paper.

4.1.2 Dependence of the Median Strength on Fishnet Length.
As already discussed, we try to establish a relation between the size
effect curve and one corresponding upper bound on Pf. Relying on
the fact that the histogram is always concave (i.e., no center of cur-
vature lies above the histogram curve), we choose the tangent line
through the median strength as the upper bound of Pf. Typically,
we care about the slope near the mean or median strength,
because this slope is easy to obtain from a limited number of
tests. The straight lines in Fig. 3 are the tangent lines through the
median strengths of each histogram. It is clear that they are the
upper bounds for each corresponding distribution. Moreover,
these upper bounds are Weibull distributions, which satisfy the
weakest-link assumption, that is, the vertical distance between
two adjacent lines is determined by the logarithm of the length
ratio of the two fishnets, ln s2/s1. Suppose the strength distribution
in the Weibull scale is Y=m X+C for the fishnet of reference
length s0, where X= ln σ and Y= ln[−ln(1−Pf)]. Then, from
Eq. (4), the median strength σ0.5 of the fishnet with length s satisfies
the following relation in the Weibull scale:

Y = mX + C + ln (s/s0), where X = ln σ0.5 (5)

Solving for X yields:

ln σ0.5 = X = −
1
m
ln (s/s0) +

1
m
(Y − C) (6)

This represents the classical Weibull statistical size effect [18],
where the logarithm of median (or mean) strength, ln σ0.5,
depends linearly on the logarithm of normalized structure size (or
length), ln(s/s0), and the slope of the line is −1/m.

4.2 Transverse Scaling

4.2.1 Evolution of Histogram Under Transverse Scaling. To
study the effect of transverse scaling on the strength distribution
of the whole structure, we fix the number of columns of the
fishnet at 16 links (s= 16) and let its number of rows increase in
the geometric sequence from 8 to 64 (r = 8, 16, 32, and 64).
Figure 4 shows the strength histograms obtained by Monte Carlo
simulations of quasi-brittle fishnets of the four different widths.
As can be seen, the pattern of strength distributions under trans-

verse scaling is significantly different from longitudinal scaling as
shown in Fig. 3. As the fishnet becomes wider in the vertical direc-
tion (transverse to the direction of tension), the variance of the
resulting strength histogram becomes smaller and the apparent

Fig. 3 Strength histogram (in the Weibull scale) of various fish-
nets under longitudinal scaling. The widths r of all fishnets are
fixed at 16 rows, while their lengths s vary geometrically from 8
to 64 columns. For each case, the sample size is 104, softening
slope Kt=−0.1K0, and number of discrete softening jumps for
each link J=20.

Fig. 4 Strength histogram (in the Weibull scale) of various fish-
nets under transverse scaling. Lengths of all fishnets, s, are fixed
at 16, while their widths, r, vary in geometric sequence from 8 to
64. For each case, the sample size is 104, the softening slope Kt=
−0.1K0, and the number of discrete softening jumps to reach zero
stress in each link J=20.
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Weibull modulus becomes larger. Because more links could fail or
soften before reaching the maximum load of the whole structure. As
a consequence, more survival probabilities need to be considered to
formulate the strength distribution, leading to a larger slope at the
lower tail.
It is striking that all the histograms intersect at almost a single

point, Q, on the curve (see Fig. 4). This is explained by two
observations:

(1) The upper tail region (e.g., Pf ≥ 0.9999 or ln[−ln(1−Pf)]≥
2.22) of the histogram always follows the weakest-link
rule. Because the additional terms from the fishnet statistics
do not affect the upper tail of the histogram in that the
applied load is much larger than the average link strength,
the neighborhood of any failed link is unlikely to survive
under the redistributed stresses. The result is that the
failure of any single link leads to the failure of the whole
structure, same as in the weakest-link chain.

(2) Except for the upper tail, the remaining histograms are
almost straight lines in the Weibull scale. The slope
(Weibull modulus), m, increases as the fishnet width is
scaled up in geometric sequence (see the straight line fit in
Fig. 4). In addition, m grows almost linearly with ln r.

With these two observations, it is now clear that, as the right end
of histogram shifts up under transverse scaling, the slope also
increases. Therefore, the histograms for fishnets of any two
widths must intersect at a point. The reason why they intersect at
a single point, Q, is that both the upward shift and the slope increase
are nearly proportional to ln r.
Note that the location of point Q depends on the rate of slope

increase of the histogram under transverse scaling of the fishnet.
The greater the rate, the higher the location of the intersection
point. Meanwhile, the rate of histogram slope increase is related
to the brittleness (or softening slope Kt) of the fishnet links. There-
fore, the location of point Q can be seen as an indicator of the mate-
rial brittleness. As the links become more brittle, the rate of slope
increase gets smaller, causing the position of Q to shift further
away to the lower left of the graph.
On the other hand, one can check that, as the links become more

ductile, Q will be closer to the median of the distributions. The
reason is that, in the limiting case of elastic-perfectly plastic links
(Kt→ 0), the fishnets of various widths follow (in the light of the
central limit theorem) the Gaussian distributions of the same mean
(or median) but different variances. In that case, point Q lies
exactly on the median line. Thus, the coordinate of point Q is
bounded from above by the median line: ln[−ln(1−Pf)]= ln ln 2.
In the limiting case of r : s→∞, the strength distribution

approaches that of a fiber bundle consisting of softening fibers.
Again, the brittleness of the links governs the softening slope of
the limiting constituent fiber. The resulting load–displacement
curve is the mean curve of the responses of each single fiber.
Since the number of fibers in the limiting bundle is infinite, the
overall load–displacement curve is almost deterministic (converges
to the mean load–displacement curve) in the light of law of large
numbers, although the strength of each individual fibers are
random variables.
Consequently, the bundle strength is the maximum load from the

limiting deterministic load–displacement curve and the correspond-
ing failure probability is a degenerate distribution (Heaviside step
function) with finite mean and zero variance. But in this case, the
limiting bundle strength is strictly smaller than the mean fiber
strengths due to softening of fibers. To be more specific, we
could calculate analytically the mean load–extension curves for
quasi-brittle bundles. Without loss of generality, we ignore the
dimensions of stress and strain (e.g., normalized by some constant
stress and strain) and consider the fiber modulus to be equal to 1
(i.e., σ = ϵ) and fiber peak load to follow the distribution G(σ),
whose density function is g(σ)=G′(σ). Then, the average load–

extension curve for the whole bundle is expressed as follows:

f (σ) =
∫∞
σ

σg(τ)dτ +
∫σ
ησ

τ + (σ − τ)
Kt

K0

( )
g(τ)dτ (7)

where

η =
Kt

Kt − K0
(8)

The first integral in Eq. (7) reduces to σ[1−G(σ)], which is the
mean load–displacement curve for brittle bundles, as shown by
Daniels [14] in 1945. It only accounts for the situation where
fibers survive under load σ (as brittle fibers directly fail after
strength is reached). The second integral in Eq. (7) considers the
case where fibers are softened but still not completely failed and
thus contributes to the bundle strength. The lower bound of the
second integral is ησ rather than 0, because the residual strength
of the softened fiber is τ+ (σ− τ)Kt/K0, which is greater than zero
when τ> ησ. Otherwise, the fiber has failed completely, contributing
no load. Note that if Kt→−∞ (perfectly brittle fibers), the value of η
approaches 1, making the second integral in Eq. (7) vanish. Then,
the result reduces to the brittle case studied by Daniels.
Figure 5 shows the comparison of average load–extension curves

of bundles with three different brittleness levels. It is clear that as
constituent fibers become more brittle, the peak load decreases.
As the other extreme case, in which the links are perfectly

elastic–plastic, i.e., a ductile bundle, the law of large numbers
directly applies to the bundle strength, while in the previous case,
it only applied to the entire load–displacement curve. Therefore,
the bundle strength is not only a constant but also is exactly the
same as the mean fiber strength.
To conclude, for extremely wide fishnets, for which r : s→∞,

their points of rotation Q are all very close to the median line y0
= ln ln 2, but their horizontal positions x0 vary due to different post-
peak softening slopes of the fibers and are bounded by the mean
fiber (or link) strength �σ, i.e., x0 ≤ ln �σ, which is an equality that
holds for perfectly ductile bundles.

4.2.2 Dependence of the Median Strength on Fishnet Width.
Now that we have clarified how the histograms evolve under trans-
verse scaling of the fishnet width, we can obtain the relation
between the median strength and the fishnet width. Let the coordi-
nates of the intersection point Q be (x0, y0). Then, the family of
Weibull approximations of the true strength distributions under
transverse scaling can be expressed as follows:

Y − y0 = m(r)(X − x0) (9)

Fig. 5 Comparison plot of analytical results of mean load–
extension curves of bundles with different fiber brittleness.
Fiber strengths are i.i.d. random variables and follow the same
distribution G(σ) for all three cases.
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where m(r) is the apparent Weibull modulus which, for simplicity,
is assumed to depend linearly on ln r:

m(r) = m0[1 + c ln (r/r0)] (10)

Here, m0 is the Weibull modulus for the reference fishnet width and
c is the rate of slope (or Weibull modulus) increase. Combining
Eqs. (9) and (10) and plugging in Y= ln(ln 2), one can solve for
the median strength, X= σ0.5:

ln σ0.5 =
ln (ln 2) − y0

m0[1 + c ln (r/r0)]
+ x0 (11)

4.3 Statistical Median Size Effect. As discussed earlier, the
scaling of geometrically similar structures is treated as the combina-
tion of longitudinal and transverse scaling in a proportional fashion.
To make sure that the scaling is geometrically similar and the aspect
ratio is a constant, the scaling of fishnet length and width must be
done at the same rate:

s = Ds0 and r = Dr0 (12)

where D> 1 is the dimensionless size. Combining the effect of lon-
gitudinal (Eq. (6)) and transverse (Eq. (11)) scaling on the strength
distribution gives the following equation:

Y − y0 = m0[1 + c ln (r/r0)](X − x0) + ln (s/s0) (13)

Here, the first term on the right-hand side of the equation is the same
as the expression for transverse scaling (Eq. (9)). The second term
takes into account the longitudinal (chain) scaling (Eq. (5)). Finally,
we replace r/r0 and s/s0 by the dimensionless size D and set Pf = 0.5
or equivalently Y= ln ln 2. Solving for X yields:

ln σ0.5 = X =
ln ln 2 − y0 − lnD
m0(1 + c lnD)

+ x0 (14)

Equation (14) is the median size effect relation that describes the
relation between the logarithms of the median strength X and the

dimensionless size D. There are four parameters in this relation;
they are as follows: x0, y0, c, and m0, where (x0, y0) is the coordinate
of the point of rotation, Q, under transverse scaling; c is the rate of
slope increase for histograms under transverse scaling; andm0 is the
apparent Weibull modulus for the reference size fishnet. Note that
m0 is generally not the same as the Weibull modulus of the link
strength distribution and depends on the shape of the chosen refer-
ence size fishnet.

5 Inference of Pf from Size Effect
The ultimate goal of obtaining the size effect curve (Eq. (14)) is

to infer the upper bound on the failure probability distribution (or
the strength distribution) of the whole structure for various sizes.
This is achieved by substituting into Eq. (13) the parameters
obtained from the size effect curve:

Y = ln [−ln (1 − Pf )] = m0(1 + c lnD)(X − x0) + y0 + lnD (15)

Solving for Pf(σ) and using the fact that X= ln σ yields the upper
bound (i.e., Weibull) estimation of the strength distribution:

Pf (σ) = 1 − exp −n
σ

σ0

( )m{ }
(16)

where n = Dey0 , σ0 = ex0 , and m=m0(1+ c ln D).
Figures 6 and 7 show the histograms of fishnet strength for

various sizes. It is a common feature that both the mean and the var-
iance of strength decrease as the fishnet size increases. In addition,
the variances for the more ductile case (Kt=−0.1K0) are much
smaller than those for the more brittle case (Kt=−0.5K0).
To illustrate the mean or median size effect, Fig. 8 shows the

median size effect curves using the median strengths of the
samples obtained from the histograms of the Monte Carlo simula-
tions in Figs. 6 and 7. The optimum fit of the data by Eq. (14) is
also shown for comparison. It is clear that the size effect relation is
monotonically decreasing and has a convex curvature, which is a

(a) (b)

(c) (d )

Fig. 6 Strength histograms of fishnets (Kt=−0.5K0) of four typical sizes under uniaxial tension:
(a) 8 × 16, (b) 16 ×32, (c) 32 ×64, and (d) 64× 128. The counts have been normalized to probability
density.
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general feature of the type 1 size effect [19,20]. As discussed earlier,
parameters c and y0 indicate the brittleness of the fishnet links.
By comparing the parameters of the optimum fit in Figs. 8(a) and
8(b), we see that the rate of slope increase under transverse
scaling, c, increased from 0.25 to 0.27, as the links became less
brittle. Meanwhile, the distance between Q and the median line, y0
− ln ln 2, decreased from 2.63 to 0.93: the more ductile the material,
the closer it is to the median line for Q.
By using the optimal parameters, one obtains the predictions of

the upper bound failure probability for the fishnet. The predictions
and actual histograms are shown, for comparison, in the Weibull
scale in Fig. 9. In general, the predictions match the histograms
pretty well in the regions near and above the mean strength.
Since the curve of the actual failure probability keeps bending
downward as the slope keeps increasing while moving toward the
lower tail, it is no surprise that the histograms starts to deviate
from the Weibull upper bound, which is a straight line.

Note that all the predictions intersect at a single point. An inter-
esting consequence of this is that, below the point of intersection,
the structure strength might increase as the size increases, which
is exactly the opposite of the trend at the mean level. Whether
this reverse trend would actually happen in the probability range
that we are interested in (10−7≤Pf≤ 10−5) depends on the brittle-
ness of the material. This indicates that, even though the structure
becomes weaker as it becomes larger, in the sense that the
mean strength decreases, it could become stronger at the level of
Pf = 10−6 in the lower tail of failure probability. In other words, a
reverse size effect can occur at the tail of failure probability level.
Finally, due to a much faster convergence rate, one could also use

the mean strengths from the test data to replace the median strengths
used in the current model.
This will lead to a safer (less tight) upper bound compared with

using the median. The reason is that, for the Weibull distribution of
modulus m> 3.44, the median is slightly greater than the mean

(a) (b)

(c) (d )

Fig. 7 Strength histograms of fishnets (Kt=−0.1K0) of four typical sizes under uniaxial tension:
(a) 8 × 16, (b) 16 × 32, (c) 32 ×64, and (d) 64× 128. The counts have been normalized to probability
density.

(a) (b)

Fig. 8 Optimum fit of the size effect relation (ln σ0.5 versus ln D) using the sample median
strength obtained from Monte Carlo simulations. Two different brittleness levels given by Kt=
−0.5K0 and −0.1K0 are considered here. The data points are the sample median strengths for
the four typical sizes, and the curve is the optimum fit.
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(precisely, the mean= σ0Γ(1+ 1/m) and the median= σ0 (ln 2)1/m).
On the other hand, for symmetric distributions such as the Gaussian,
the mean is exactly equal to the median. Since general strength dis-
tributions of fishnets lie between those of Weibull and Gaussian dis-
tributions, their medians are slightly larger than their mean values.
This fact, which is the consequence of negative skewness of the
Weibull and related fishnet distributions, means that the substitution
of a mean for the median predicts the safety to be slightly higher
than it actually is.

6 Homogenization of Fishnet Statistics
Noting that the actual strength histogram deviates downward

from our upper bound prediction and bends down more in the
lower tail, we may naturally ask whether there exists a general
model that could capture this phenomenon. For this purpose, we
resort to the two-term fishnet model with a homogenized (equiva-
lent) link strength distribution P̃1(σ).
First, we start with the upper bound prediction, Eq. (16), which is

the Weibull distribution obtained in Sec. 5 and is denoted as Pf0 (σ).
The predicted Weibull modulus m in P f0 (σ) is larger than the value
for a single link m0. The ratio m/m0 indicates the size of the equiv-
alent course-grained “link.” Therefore, the total number of equiva-
lent “links” is Neq= r s/(m/m0). Then, P̃1(σ) is calculated by reverse
scaling from P f0 (σ) for the equivalent chain back to a single link:

P̃1(σ) = 1 − [1 − Pf0 (σ)]
1/Neq (17)

Finally, we apply the two-term fishnet model to the coarse-grained
system:

Pf (σ) = P f0 (σ) − NeqP̃1(σ)[1 − P̃1(σ)]
Neq−ν−1[1 − P̃1(ησ)]

ν (18)

where ν is the equivalent size of the stress redistribution region and
η is the equivalent stress redistribution factor.
The dashed curves in Fig. 9 show the optimum fit of the histo-

gram data given by Eq. (18). The homogenized two-term fishnet
model shows the ability to capture the lower tail behavior of the
strength histograms of fishnets with various sizes. However, this
improvement does not come without a price. The model requires

more information apart from the mean (or median) size effect.
More specifically, one must know the value of m0 in P1(σ), ν,
and η a priori, while the upper bound prediction (Eq. (16)) only
requires the size effect relation, which is much easier to obtain
by tests.

7 Scaling Relations for Variance and CoV of Strength
Apart from the scaling relations for the mean and median values

of the strength distributions, the size effect on the variance and CoV
is also critical to characterize the reliability of a structure. One
would expect that the scaling relations for variance and CoV (the
standard deviation divided by the mean) should depend heavily
on the brittleness of the material characterized by Kt: if the material
is ductile (very low |Kt|), the scaling law of variance is dictated by
the central limit theorem, as for the ductile fiber bundle; on the other
hand, if the material is brittle (very high |Kt|), the variance should
have a different scaling relation and is mainly governed by the
weakest-link rule. Therefore, we first examine the foregoing two
limiting cases. Then, the cases where the fishnet links exhibit
gradual postpeak softening (medium |Kt|) should lie between the
two extreme cases.
For the weakest-link model consisting of n links, the strength dis-

tribution is

Pf (σ) = 1 − e−n(σ/σ0)
m

= 1 − exp
σ

n−1/mσ0

( )m

(19)

Based on this cumulative distribution function (CDF), we could cal-
culate its variance:

Var = (n−1/mσ0)
2 Γ 1 +

2
m

( )
− Γ2 1 +

1
m

( )[ ]
∝ n−2/m (20)

Since, for two-dimensional scaling, n= αD2, we have

Var ∝ D−4/m (21)

From Eq. (1), the CoV of Weibull distributions is a constant, that is,
independent of n.

(a) (b)

Fig. 9 Comparison of predicted (thick lines) upper bound strength distributions of the fishnet
with the actual histograms (discrete markers). Optimum fit by the homogenized two-term
fishnet model is shown by dashed curves.
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For the ductile case, the structural limit is a ductile bundle of n
fibers. From the central limit theorem, the variance, Var, scales as
n−1. Since n=αD2, we have

Var ∝ D−2 (22)

In addition, the sample mean does not change with n; therefore, the
CoV scales as

����
Var

√
, that is, CoV ∝ D−1.

To sum up, we show the scaling relations of variance and CoV
for the brittle and ductile limits in the following table:

Var CoV

Brittle D−4/m Constant
Ductile D−2 D−1

Figure 10 shows the measured scaling relations of variance and
CoV as functions of the dimensionless size D= r/r0= s/s0 in log
scale. Here, the size of the smallest fishnet (r0= 8, s0= 16) is
chosen as the reference size. The brittle and ductile limit of the
scaling relations of variance and CoV match very well with the ana-
lytical expressions (Eqs. (21) and (22)). The slope measured for the
variance of the weakest-link model is −0.38, which is slightly
greater than the value predicted by the theory (−4/m=−0.4). This
small discrepancy is due to the fact that P1(σ) is not completely a
Weibull distribution but only that it has a Weibull lower tail.
From both figures, it is clear that the variance and CoV of the

fishnet strength distribution lie in the middle of the two limits,
and as fishnet links become more brittle, the variance and the
CoV tend to those of the chain. As the links become more
ductile, the behavior of variance and CoV is more similar to the
ductile bundle. As expected, the scaling relations of variance and
CoV of the strength distributions for general fishnets depend on
the brittleness of the links. They transit continuously from that of
a brittle chain to that of a ductile bundle.
Interestingly, the CoV of the more ductile fishnet (Kt=−0.1K0)

gradually tends to a constant very fast (see Fig. 10(b)). This is
because, under longitudinal scaling, the overall response of the
fishnet becomes more brittle, making its strength distribution con-
verge to a Weibull distribution. As a result, the evolution of CoV
tends to a constant for the large-size limit. Similar behavior is
also seen for the more brittle fishnet, but if the fishnet is already
more brittle and has a relatively small CoV, this phenomenon is
not as significant.

8 Conclusions

(1) The statistical median size effect relation for nacreous biomi-
metic materials is not difficult to derive. But an analytical
mean size effect relation appears to be much more difficult
to obtain.

(2) An effective way to obtain the size effect relation is to
analyze first longitudinal and transverse (or lateral) scalings
separately, and then superpose the results to obtain the two-
dimensional scaling.

(3) In view of the negative skewness of all the distributions,
replacing the mean by the median yields a safe bound on
the failure probability at any given stress, i.e., give a conser-
vative result.

(4) The longitudinal scaling leads to a vertical upward shift
of the distribution in the Weibull scale, while the trans-
verse scaling leads to a counterclockwise rotation of
the distribution about a fixed point located below the
median.

(5) Because of the rotation of the failure probability distribution
at transverse scaling, a reverse size effect at two-dimensional
scaling may take place, i.e., a trend opposite to the mean size
effect may occur: The strength at which Pf = 10−6 may
increase as the structure size increases. This is, of course,
advantageous for design safety.

(6) An upper bound, i.e., safe, estimate for the tail of the failure
probability of nacreous materials of any size and shape can
be inferred from the calibrated parameters of the size effect
relation.

(7) Unlike histogram testing, the size effect method of estimating
a tight upper bound on the failure probability distribution
requires only about six tests for each of several scaled
fishnet sizes.

(8) Millions of Monte Carlo simulations confirm the analytical
results.

(9) The inference method developed here is applicable to nacre-
ous materials whose links have any postpeak softening prop-
erties, i.e., brittle, quasi-brittle, or almost elastic–perfectly
plastic.
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(a) (b)

Fig. 10 Two-dimensional geometrically similar scaling relations of (a) variance and (b) CoV for
the weakest-link chain (brittle limit), fishnets, and the ductile fiber bundle (ductile limit). Weibull
modulus for the strength distribution, P1(σ), of links is m=10.
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